IFTU-65

Piecewise Continuous Linear Interpolation of the Sine Function
for Direct Digital Frequency Synthesis

J.M.P. Langlois and D. Al-Khalili

Department of Electrical and Computer Engineering
Royal Military College of Canada, Kingston (Ontario), Canada
pierre.langlois@mmc.ca, alkhalili-d@rmc.ca

Abstract — This paper discusses the design of Direct Digi-
tal Frequency Synthesizers (DDFS) based on the linear
interpolation of the sine function. The problem of approxi-
mating the sine function within a desired error bound is
specifically considered. The use of linear segments is favor-
able for hardware implementation because of the low
processing complexity requirements. A relation between the
minimum number of linear segments, the resolution with
which segment slopes are expressed, and the achievable pre-
cision is derived. Tradeoffs between memory storage

. requirements and computational complexity are identified,
and architectural and implementation issues are discussed.
Example designs achieving 8, 10 and 12 bits of amplitude
resolution with 59, 77 and 86 dBc of Spurious Free Dynamic
Range (SFDR} are presented.

1. INTRODUCTION

The flexibility and performance characteristics of Di-
rect Digital Frequency Synthesis (DDFS) make this kind
of synthesizer very attractive for reconfigurable commu-
nications equipment and software radio applications. The
combination of excellent frequency resolution and high
frequency switching rates differentiate DDFS from other
synthesizers based on phase locked loops. DDFS has been
well described in the literature [1].

The basic DDFS architecture includes a phase accumu-
lator and a Phase to Sinusoid Amplitude Converter
(PSAC). The output frequency is given by:

FCW
Fout =fo><2—N ()

where f; is the frequency of the clock reference, FCW is
the frequency contrel word, and N is the width of the
phase accumulator. -

The frequency resolution of the synthesizer is given by
the ratio of the clock reference to the number of states of
the phase accumulator. Hence, a large N is often selected,
at the expense of a potential exponential increase in the
PSAC complexity. For this reason, only M most signifi-
cant phase accumulator bits are retained. The quadrant
symmetry of the sine function is also normally exploited

0-7803-7695-1/03/$17.00 © 2003 IEEE

phase accumulator MSB1

to reduce the PSAC. complexity by more than a factor of
four. The resulting architecture is shown in Fig. 1.

Phase to
Sinusoid

Amplitude |,
Converter
(PSAC)

register

1's complement
digital sinusoid sequence

clack reference f,

Fig.1 Single phase DDFS with phase truncation and quad-
ran! symmetry.

Several approaches have been proposed for the design
of the PSAC, including using a ROM Look-Up Table
(LUT), angular decomposition, sine amplitude compres-
sion, CORDIC and other angular rotation algorithms, and
polynomial approximations [1]. All of these methods
make a trade-off between computational complexity and
memory storage. In most cases, the goal is to achieve a
high Spurious Free Dynamic Range (SFDR) and a high
maximum clock rate, while minimizing silicon area and
power.coeisumption. The SFDR is defined as the ratio of
the power of the greatest undesired frequency spur to the
power of the desired output frequency.

In this paper, we consider PSACs based on a first order
polynomial approximation, i.e. making a linear inferpola-
tion of the sine function. This approach presents
interesting hardware implementation advantages since
computational complexity is limited to a single multipli-
cation and an addition.

The paper is divided into 6 sections including this in-
troduction. In section II, we review linear interpolation
PSAC for DDFES. Section III discusses the problem of the
linear interpolation of the sine function. System imple-
mentation issues are presented in section IV, and design
examples are given in V. Conclusions are found in sec-
tion VI

AB65

2003 IEEE MTT-S Digest

Wi

11. LINEAR INTERPOLATION PSAC FOR DDFS

To the best of our knowledge, Freeman [2] was the first
1o use a linear interpolation technique in DDFS. He effec-
tively used 16 piecewise continuous linear segments to
approximate the first quadrant of the sine function, Seg-
ment slopes and initial amplitudes were stored in two
“small ROMs, and a third ROM stored correction values.
Multipliers and adders completed the architecture. Bel-
laouar et al. [3] used a 1 degree Taylor series expansion
in 32 equal length segments, adding the capability of gen-
erating quadrature sinusoids. Liu et al, [4] decomposed
the first quadrant of the sine function with linear seg-
ments of unegual lengths, whose number, slopes and y-
intercepts were carefully selected to achieve a desired
precision in the sine amplitude estimate. The work by
Curticipean et al. [5] can be seen as a combination of
angular decomposition and linear interpolation. It features
high SFDR, reduced ROM size, reasonable computational
costs and reduced power consumption, El Said and El-
masry [6] improved on Bellaouar et al.’s work by shifting
the inteipolation point of the Taylor series expansion to
the center of each interval. The result is a decrease in the
required ROM storage at a slight increase in computa-
tional complexity.

As shown in Fig. 1, the role of the PSAC is to calculate
an approximation of the sine function for first quadrant
angles. Let x represent a scaled phase angle in the interval
{0, 1[, then the output of the PSAC is given by

Flx) = Asin(i";—) —e(x) 0<x<l @

where A is some amplitude equal to or less than 1, and €
is the approximation error, The approximated sine ampli-
tude in the first quadrant is expressed with L bits, giving a
synthesizer output of (L + 1) bits. The amplitude factor A
should be selected to maximize the synthesizer output
amplitude without clipping. A reasonable choice is given
by (28 = 1)/ 25, '

For a linear interpolation DDFS, the PSAC implements
equation (2) as follows:

Yo +or(x—x,) XgSx<x (x, =0)
yl+m1(x_x1) XISJC(_xz

Flo=¢ 3
¥, o (x—x) X Sx<xg,
Yoo tm_(x-x) x_ Sx<x, {(x,=1)

where s is the number of segments, my and y, are a seg-
ment’s slope and initial amplitude, respectively, and x; is
a segment’s lower bound.

The selection of the number and length of the linear
segments can greatly simplify the implementation of
equation (3). If 5 is chosen to be a power of two, the log,s
most significant bits of x give the segment number, &, and

can directly address the LUTSs storing the slopes and ini-
tial amplitudes. If the segments are equal in length, then
the least significant W — log,s bits of x give the result of
the (x — x), and the segment bounds x; are equal to £/ 5.
Furthermore, the length of each segment is equal to 1/ 5.

The general architecture of a PSAC using linear inter-
polation and implementing these hardware optimizations
is shown in Fig. 2. The scaled phase angle x is expressed
with W = M — 2 fractional bits and the output is expressed
with L fractional bits.

x e [0, 1] W-log,(s) LSBs: (x - x,}
/ - -
W=M-2 L
segment slopes
my
log,(s} (s words)

MSBs for

segment L

selection inital segment

. amplitudes y,

(s words) [¢]

Fig.2 Linear interpolation PSAC general architecture.

From Fig. 2, it can be seen that the implementation of
the PSAC with a linear interpolation architecture has a
very low computational complexity, when compared with
other methods, since a single multiplication and an addi-
tion are required.

III. LINEAR INTERPOLATION OF THE SINE FUNCTION

A. Error Analysis

In order to achieve the equivalent of R bits of amplitude
resolution, the absolute value of the error [(x){ in (2) must
be less than ¥%LSB, or 27® From equations (2) and (3),
the interpolation error in segment & is given by

e(x)= Asin(%)—(m*(x—xkr)+yk) X, Sx<x,, 4)

The point x, where the error signal e(x) is greatest can be
found by equating the first derivative of (4) to O:
_2 o 2m,
X, z cos™ (o)
Depending on the value of my, there are two possible .
cases, shown in Fig. 3. For case a., x;, lies inside segment
k’s bounds, and for case b. it doesn’t. In the figure, the

symbols €, £, and £, represent the error at the left
bound, at the peak, and at the right bound of segment £:

(3)

£, =£(x,)= Asin(%y— (my (x, —x,)+ ¥,)

9
£, =E(x,)= Asm(——z——) = (m, (x, —x,)+¥,) (6)

T4

£, =E(x,,) = Asin(-z—) ~(m (X =X+ Y,)

A66

K LI

Fig.3 a. Peak error lies inside segment bounds.
b. Peak error lies outside segment bounds.

B. Selection of Segment Coefficients

In order to minimize the absolute value of the error
le(x)| inside a segment, that segment’s initial amplitude y,
must be selected so that the error signal €(x) is distributed
evenly about the x axis. In case a., we should have:

lex)|_ =&, =—min(e, &) D
and in case b, we should have:
[, =[] =ene!- ®

Given a segment’ s widthx,,; — x, and an amplitude A,
the minimum maximum error |g{x)|n,, on this segment
will be attained for a specific situation in case a., i.e. g =
gg. From (6), the corresponding segment slope mtygp is:

Miope = A [Siﬂ(mkﬂ) ‘Sﬁl(&)})
Xrs ™% 2

2

From these observations, the following coefficient se-
lection algorithm therefore emerges once design
parameters s, R, E, and C have been selected. For each
segment:
1. calculate the value of myqy using (9);
2, obtain ny, by rounding miey to E bits;
3. find the corresponding value of x;, from (5);
4. calculate y, according to one of the following equa-
tions:

1 . om,. (™=
v, ___E(Asm(_;ﬂﬁ)ﬁmk(xm _xk)+A31n(T*)] (10

" if case b. occurs, i.e. Xy < Xy OT X > Xy O,

1 . -
¥ =§[Asm(~2i)—mk'(x,q, —xk)+ASm(%-)J‘ {1n

if case a. occurs and if my < My (and hence &g > €);
or,

v, =%(Asin(%i)~mk (xy — %))

(12)
nxkﬂ

2

if case a. occurs and if 7y > Mgy, (and hence €g <€)

5. round y, to C bits;

6. calculate the maximum amplitude error [&(x)max ac-
cording to (7) or (8), depending on the case.

C. Achievable Resolution Given s and E

+—21—(Asin()= (X — X))

The procedure described in the previous subsection can
be followed to find the global maximum amplitude error
for all segments. This was repeated for various values of
the number of segments s and the number of bits £ with
which the slopes my are expressed. The results are shown
in Fig. 4.

iop bits A

output precisi

16 32 64 128 256 512 1024
numbet of linear segments &

Fig.4 Output resolution given s and £

From Fig. 4, it can be seen that there is a bound for
which it is not possible to achieve a desired output resolu-
tion given a number of segments, regardless of the
precision with which the m, are expressed. It can also be
seen that there is a linear relationship, passed a certain
point, between the output resolution, the value of E, and
the log in base 2 of the number of segments used. For
example, to achieve & bits of amplitude resolution with 8
segments, at least 5 bits must be used to quantize the m,
Achieving 12 bits of resolution with no more than 2 bits
for the segment slopes requires at least 512 segments.

A67

It must be noted that Fig. 4 gives the worst case re-
quirernents for all segments in a set. In actual fact, the
resolution for some specific segments will be much
greater. Some segments may thus be combined to reduce
memory storage requirements. It must also be noted that
Fig. 4 assumes a infinite value of C to remove the effect
of the quantization of the y;.

IV. IMPLEMENTATION ISSUES

Fig. 4 ouilines the fact that a tradeoff can be made be-
tween the number of linear segments used and the
resolution with which the segment slopes are expressed.
Considering Fig. 2, it is obvious that both these parame-
ters will affect the complexity 0f the multiplier and the
total storage requirements.

Total storage in bits is given by s x (C + E). The com- '

plexity of the row decoders in LUTs is directly
proportional to the nunmber of rows, and hence this prod-
uct is a good indicator of total storage cost.

The complexity of the multiplier can be approximated
as the product of the length of its operands, in this case
(W —~ logys) x E. Hence, choosing a large s is favorable,
since it reduces the minimum value of E required, and it
also reduces the width of the operand (x — xy).

The size of the multiplier also affects the maximum
clock rate of the system. If it is very large, pipelining reg-
isters may be required and they may significantly affect
- the total system complexity.

A tradeoff must therefore be made between the values
of 5 and E, and it must be based on a comparison of the
relative costs of implementing the multiplication opera-
tion and the storage cost per bit.

V. DESIGN EXAMPLES AND SIMULATION RESULTS

Using the procedure described above, a simple design
with s = 8 segments achieving 8 bits of resolution was
produced. Its coefficients are given in Table 1 below.
With a phase resolution M = 11 bits, this design achieves
‘an SFDR of —59 dBc. For this design, the other parame-
tersare L =9, E =35 and C = 9. Total storage is therefore
equal to 112 bits. The multiplier size is 6 x 5.

A second design was produced. It achieves 10 bits of
amplitude resolution with s = 32 segments. The other
parameters are L = 12, E =5, and C = 10. The SFDR is
—76.7 dBc for a phase resclution of M = 14 bits, Total
storage is equal to 480 bits. The multiplier size is 7 X 5.

A third design achieving 12 bits of resolution and 86
dBc of SFDR for a phase resolution of M = 16 bits was
also considered. It uses s = 64 segments. System parame-
ters are L = 14, £ = 6 and C = 12. Total storage is equal to
1152 bits, and the multiplier size is 8 X 6.

TABLE I

SIMPLE DESIGN EXAMPLE

k my M

0 25116 0/512
1 24716 99/512
2 22/16 | 195/512
3 19716 | 283 /512
4 16716 | 360 /512
5 12/16 | 423 /512
6 7/16 1 471/512
7 2/16 [500/512

V1. CONCLUSION

In this paper, we have discussed the design of Direct
Digital Frequency Synthesizers (DDFS$) based on the lin-
ear interpolation of the sine function, The problem of
approximating the sine function within a desired error
bound was specifically considered. The use of linear
segments was shown to be favorable for hardware im-
plementation because of the low processing complexity
requirements. A relation between the minimum number .
of linear segments, the resolution with which segment
slopes are expressed, and the achievable precision was
derived. Tradeoffs between memory storage requirements
and computational complexity were identified, and archi-
tectural and implementation issues were discussed. Three
example designs achieving 8, 10 and 12 bits of amphtude
resolution were presented.

REFERENCES

[1]1 V.F. Kroupa, Ed., Direcr Digital Frequency Synthesizers,
- IEEE Press, 1999.

[2] R.A. Freeman, “Digital sine conversion circuit for use in
direct digital synthesizers,” U.S. Patent 4,809,205, 28°
February 1989.

[3] A. Bellaovar, M. S, O’ brecht, A. M, Fahim, and M, I, El-
masry, “Low-power direct digital frequency synthesis for
wireless communications,” fEEE Journal of Solid-State
Circuits, vol. 35, no. 3, March 2000, pp. 385-390.

[4] S.-I Liu, T.-B. Yu and H.-W. Tsao, “Pipeline direct digital

- frequency synthesiser using decomposition method,” IEE
Proceedings on Circuits, Devices and Systems, vol. 148,
no. 3, June 2001, pp. 141-144,

[5]1 F. Curticipean, K.I. Palomiki and J. Niittylahti, “Direct
digital frequency synthesiser with high memory compres-
sion ratio,” Electronic Letters, 11* Qciober 2001, Vol. 37,
No. 21, pp. 1275-1277.

[6] M.M El Said and M1, Elmasry, “An improved ROM com-
pression technique for direct digital frequency
synthesizers,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, Phoenix AZ, 26-29
May 2002, pp. 437-440.

A68

	MTT025
	Return to Contents

