
IFTU-65 

Piecewise Continuous Linear Interpolation of the Sine Function 
for Direct Digital Frequency Synthesis 

J.M.P. Langlois and D. Al-Khalili 

Department of Electrical and Computer Engineering 
Royal Military College of Canada, Kingston (Ontario), Canada 

pierre.langlois@rmc.ca, alkhalili-d@rmc.ca 

Abstract - This paper discusses the design of Direct Digi- 
tal Frequency Synthesizers (DDFS) based on the linear 
interpolation of the sine function. The problem of approxi- 
mating the sine function within a desired error hound is 
specifically considered. The use of linear segments is favor- 
able for hardware implementation because of the low 
processing complexity requirements. A relation between the 
minimum number of linear segments. the resolution with 
which segment slopes are expressed, and the achievable pre- 
cision is derived. Tradeoffs between memory storage 
requirements and computational complexity are identified, 
and architectural and implementation issues are discussed. 
Example designs achieving 8, 10 and 12 bits of amplitude 
resolution with S9,77 and 86 dBc of Spurious Free Dynamic 
Range (SFDR) are presented. 

I. bJTRODUCTlON 

The flexibility and performance characteristics of Di- 
rect Digital Frequency Synthesis (DDFS) make this kind 
of synthesizer very attractive for reconiigurable commu- 
nications equipment and software radio applications. The 
combination of excellent frequency resolution and high 
frequency switching rates differentiate DDFS from other 
synthesizers based on phase locked loops. DDFS has been 
well described in the literature [ 11. 

The basic DDFS architecture includes a phase accumu- 
lator and a Phase to Sinusoid Amplitude Converter 
(PSAC). The output frequency is given by: 

f",, = f"X$p 
where f. is the frequency of the clock reference, FCW is 
the frequency control word, and N is the width of the 
phase accumulator. 

The frequency resolution of the synthesizer is given by 
the ratio of the clock reference to the number of states of 
the phase accumulator. Hence, a large N is often selected, 
at the expense of a potential exponential increase in rhe 
PSAC complexity. For this reason, only M most signifi- 
cant phase accumulator bits are retained. The quadrant 
symmetry of the sine function is also normally exploited 

to reduce the PSAC complexity by more than a factor of 
four. The resulting architecture is shown in Fig. 1. 

Fig. 1 Single phase DDFS with phase truncation and quad- 
rant symmetry. 

Several approaches have been proposed for the design 
of the PSAC, including using a ROM Look-Up Table 
(LUT), angular decomposition, sine amplitude compres- 
sion, CORDIC and other angular rotation algorithms, and 
polynomial approximations [l]. All of these methods 
make a trade-off between computational complexity and 
memory storage. In most cases, the goal is to achieve a 
high Spurious Free Dynamic Range (SFDR) and a high 
maximum clock rate, while minimizing silicon arca and 
power consumption. The SFDR is defined as the ratio of 
the power of the greatest undesired frequency spur to the 
power of the desired output frequency. 

In this paper, we consider PSACs based on a first order 
polynomial approximation, i.e. making a linear interpola- 
tion of the sine function. This approach presents 
interesting hardware implementation advantages since 
computational complexity is limited to a single multipli- 
cation and an addition. 

The paper is divided into 6 sections including this in- 
troduction. In section II, we review linear interpolation 
PSAC for DDFS. Section III discusses the problem of the 
linear interpolation of the sine function. System imple- 
mentation issues are presented in section IV, and design 
examples are given in V. Conclusions are found in sec- 
tion VI. 
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II. LINEAR INTERFOLA~ON PSAC FOR DDFS 

To the best of OUT knowledge, Freeman [21 was the f=st 
to use a linear interpolation technique in DDFS. He effec- 
tively used 16 piecewise continuous linear segments to 
approximate the first quadrant of the sine function. Seg- 
ment slopes and initial amplitudes were stored in two 
small ROMs, and a third ROM stored correction values. 
Multipliers and adders completed the architecture. Bel- 
laouar et al. [3] used a 1” degree Taylor series expansion 
in 32 equal length segments, adding the capability of gen- 
erating quadrature sinusoids. Liu et al. [4] decomposed 
the fast quadrant of the sine function with linear seg- 
ments of unequal lengths, whose number, slopes and y- 
intercepts were carefully selected to achieve a desired 
precision in the sine amplitude estimate. The work by 
Cwtic%pean et al. [5] can be seen as a combination of 
angular decomposition and linear interpolation. It features 
high SFDR, reduced ROM size, reasonable computational 
costs and reduced power consumption. El Said and El- 
masry [6] improved on Bellaouar et al.‘s work by shifting 
the inteipolation point of the Taylor series expansion to 
the center of each interval. The result is a decrease in the 
required ROM storage at a slight increase in computa- 
tional complexity. 

As shown in Fig. 1, the role of the PSAC is to calculate 
an approximation of the sine function for first quadrant 
angles. Let x represent a scaled phase angle in the interval 
[O, 1 [, then the output of the PSAC is given by 

f(x)=Asin(T)-E(x) O<x<l (2) 

where A is some amplitude equal to or less than 1, and e 
is the approximation error. The approximated sine ampli- 
tude in the first quadrant is expressed with L bits, giving a 
synthesizer output of (L + 1) bits. The amplitude factor A 
should be selected to maximize the synthesizer output 
amplitude without clipping. A reasonable choice is given 
by (2L - 1) / 2L. 

For a linear interpolation DDFS, the PSAC implements 
equation (2) as follows: 

I 

Yo+m,(x-x,) x,sx<x, (x, =O) 
Y, +4(X-.5) x, sx<x, 

f(r)= j 
1 (3) 
y* +m,(x--XI) x1 sx<x,,, 

li y,.,+m,-,(X--X,.,) I,-,Ix<x, (x, = 1) 
where s is the number of segments, mr and yL are a seg- 
ment’s slope and initial amplitude, respectively, and y is 
a segment’s lower bound. 

The selection of the number and length of the linear 
segments can greatly simplify the implementation of 
equation (3). Ifs is chosen to he a power of twu, the log*s 
mnst significant bits of x give the segment number, k, and 

From Fig. 2, it can be seen that the implementation of 
the PSAC with a linear interpolation architecture has a 
very low computational complexity, when compared with 
other methods, since a single multiplication and an addi- 
tion are required. 

III. LINEAR INTERPOLATION OF THE SINE FUNCTION 

A. Error Analysis 

In order to achieve the equivalent of R bits of amplitude 
resolution, the absolute value of the error le(x)l in (2) must 
be less than %LSB, 01 2”. From equations (2) and (3). 
the interpolation crnx in segment k is given by 

~(x)=Asin(~)-(m,(x-x,j+y,) x, <x<x,+, (4) 

The point xQ where the ~ITOT signal E(x) is greatest can be 
found by equating the fust derivative of (4) to 0: 

Depending on the value of mk, there are two possible 
cases, shown in Fig. 3. For case a., x, lies inside segment 
k’s bounds, and for case b. it doesn’t. In the figure, the 
symbols &. Q. and Ed, represent the error at the left 
hound, at the peak, and at the right bound of segment k: 

EC =E(Xb)=Asin(~-(m,(x,-x,)+y,) (6) 

em = E(x,+,) = Asin(- I- cm, (.$,I - Xk If Yt ) 

can directly address the LUTs storing the slopes and ini- 
tial amplitudes. If the segments are equal in length, then 
the least significant W - log2s bits of x give the result of 
the (x - xk), and the segment bounds xlr zue equal to k I s. 
Furthermore, the length of each segment is equal to 1 / s. 

The general architecture of a PSAC using linear inter- 
polation and implementing these hardware optimizations 
is shown in Fig. 2. The scaled phase angle x is expressed 
with W = M - 2 fractional hits and the output is expressed 
with L fractional bits. 
Xt [0,1l w-log,(s) LSBS: (X - XJ 

W=M-2 
segment stop 

m 
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Fig. 2 Linear interpolation PSAC general architecture. 



Fig. 3 a. Peak error lies inside segment bounds. 
b. Peak error lies outside segment bounds. 

B. Selection of Segment C&icients 

In order to minimize the absolute value of the error 
$(x)1 inside a segment, that segment’s initial amplitudeyk 
must be selected so that the error signal E(X) is distributed 
evenly about the x axis. In case a., we should have: 

Is(x) =.E@ =-min(E,,E,), (7) 
and in case b. we should have: 

IWmm =I%/=I4~ (8) 
Given a segment’s widthxk+, - xk and an amplitude A, 

the minimum maximum error le(x)l,,, on this segment 
will be attained for a specific situation in case a., i.e. cXL = 
eW1. From (6), the corresponding segment slope rnkoot is: 

A 
T.3c,r = __ 

I 
sin( “;” -) -sin(~) 

1 
(9) 

xx+, -xx 
From these observkons, the following &efficient se- 

lection algorithm therefore emerges once design 
parameters J, R, E, and C have been selected. For each 
segment: 
1. calculate the value of mkap, using (9); 
2. obtain mk by rounding mkopf to E bits: 
3. fmd the corresponding value of x, from (5); 
4. calculate yr according to one of the following equa- 
tions: 

Asin(m,(x,+, -x,)+Asin(T) 
1 

(10) 

if case b. occurs, i.e. XQ < xk or xlp > xk,,; or, 

yx =f As&+& -x,)+As+ 
t 

(11) 

if case a. occurs and if ml, ,< mkop, (and hence Ed > EL); 
or, 

yI =i(Asin(%)-m,(x, -q)) 

+$Asin(F)-n,,(s,+, -xt)) 
(12) 

if case a. occurs and if ml, > mkopt, (and hence elrR < &a). 
5. round yr to C bits; 
6. calculate the maximum amplitude error le(x)l,, ac- 
cording to (7) or (8), depending on the case. 

C. Achievable Resolution Given s and E 

The procedure described in the previous subsection can 
be followed to fmd the global maximum amplitude error 
for all segments. This was repeated for various values of 
the number of segments s and the number of bits E with 
which the slopes mk are expressed. The results arc shown 
in Fig. 4. 
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Fig. 4 Output resolution given s and E 

From Fig. 4, it can be seen that there is a bound for 
which it is not possible to achieve a desired output resolu- 
tion given a. number of segments, regardless of the 
precision with which the mk are expressed. It can also be 
seen that there is a linear relationship, passed a certain 
point, between the output resolution, the value of E, and 
the log in base 2 of the number of segments used. For 
example, to achieve 8 bits of amplitude resolution with 8 
segments, at least 5 bits must be used to quantize the mk. 
Achieving 12 bits of resolution with no more than 2 bits 
for the segment slopes requires at least 512 segments. 



It must be noted that Fie. 4 eives the worst case re- 
quirements for all segments in a set. In actual fact, the 
resolution for some specific segments will be much 
greater. Some segments may thus be combined to reduce 
memory storage requirements. It must also be noted that 
Fig. 4 assumes a infinite value of C to remove the effect 
of the quantization of the yk. 

Fig. 4 outlines the fact that a tmdeoff can be made be- 
tween the number of linear segments used and the 
resolution with which the segment slopes arc expressed. 
Considering Fig. 2, it is obvious that both these parame- 
ters will affect the complexity of the multiplier and the 
total storage requirements. 

Total storage in bits is given by s x (C + E). The com- 
plexity of the row decoders in LUTs is directly 
proportional to the number of rows, and hence this prod- 
uct is a good indicator of total storage cost. 

The complexity of the multiplier can be approximated 
as the product of the length of its operands, in this case 
(W - log& x E. Hence, choosing a large s is favorable, 
since it reduces the minimum value of E required, and it 
also reduces the width of the operand (x - x~). 

The size of the multiplier also affects the maximum 
clock rate of the system. If it is very large, pipelining reg- 
isters may be required and they may significantly affect 
the total system complexity. 

A tradeoff must therefore be made between the values 
of s and E, and it must be based on a comparison of the 
relative costs of implementing the multiplication opera- 
tion and the storage cost per bit. 

Using the procedure described above, a simple design 
with s = 8 segments achieving 8 bits of resolution was 
produced. Its coeff&nts are given in Table 1 below. 
With a phase resolution M = 11 bits, this design achieves 
an SFDR of -59 dBc. For this design, the other pamme- 
ters are L = 9, E = 5 and C = 9. Total storage is therefore 
equal to 112 bits. The multiplier size is 6 x 5. 

A second design was produced. It achieves 10 bits of 
amplitude resolution with s = 32 segments. The other 
parameters arc L = 12, E = 5, and C = 10. The SFDR is 
-76.7 dBc for a phase resolution of M = 14 bits. Total 
storage is equal to 480 bits. The multiplier size is 7 x 5. 

A third design achieving 12 bits of resolution and 86 
dBc of SFDR for a phase resolution of M = 16 bits was 
also considered. It uses s = 64 segments. System pamme- 
ters are L = 14, E = 6 and C = 12. Total storage is equal to 
1152 bits, and the multiplier size is 8 x 6. 

TABLE I 
SIMPLE DESIGN EXAMPLE 

VI. CONCLUSION 

In this paper, we have discussed the design of Direct 
Digital Frequency Synthesizers (DDFS) based on the iii- 
ear interpolation of the sine function. The problem of 
approximating the sine function within a desired error 
bound was specifically considered. The use of linear 
segments was shown to be favorable for hardware im- 
plementation because of the low processing complexity 
requirements. A relation between the minimum number 
of linear segments, the resolution with which segment 
slopes are expressed, and the achievable precision was 
derived. Tradeoffs between memory storage requirements 
and computational complexity were identified, and archi- 
tectural and implementation issues were discussed. Three 
example designs achieving 8, 10 and 12 bits of amplitude 
resolution were presented. 
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